

BENEFITS AND CHALLENGES OF THE ALGAL BIOFUELS INDUSTRY

Kimberly Ogden, Chemical Engineering

Why Biofuels from Algae

4-50% Lipid biomass

50-90% Other biomass

Rapid growth rate

- Efficient photosynthesis
- No heterotrophic tissues
- Double 6-12 hours

High oil content

- 4-50% non-polar lipids
- 10-45% higher energy/gdw than carbohydrate feedstocks

Biomass harvested

- 100%

Harvest interval

- 24/7, not seasonally

NAABB Team - \$49M DOE project (2010 – 2013)

Increase strair productivity

1 Algal Biology to Increase Strain Productivity

- New Strain Isolation and Development
- > Genetic Engineering

Production Strains

2 Cultivation to Sustain High Productivity at Large Scale

- Cultivation Tools & Methods
- Nutrient/Water Recycle/Wastewater Use
- Cultivation System Innovations
- Large Pond Cultivation/Biomass Production

Cultivation Processes

Reduce energy and cost or making fuels

3 Harvesting & Extraction for Scalable Efficient Processes

- Dewatering Technologies
- > Wet Extraction Technologies

4 Fuel Conversion to Demonstrate High Energy Density Fuels

Detailed Characterization

- Lipid Conversion to Fuels
- ➤ Biomass/LEA Conversion to Fuels & Chemicals

Harvest

Extraction

Lipid Conversion

LEA Conversion

Direct Conversion

5 Agricultural Co-Products with Validated Performance

- Animal Feed Development & Testing
- > Fertilizer Evaluations

LEA Agriculture applications

6 Sustainability to Analyze Integrated NAABB Technologies

- > Sustainability Models and Tools for Economic and Environmental Impact
- > Model Integration, Harmonization and Analysis

Assess and Optimize Sustainable practices through the value chain

Traditional raceway

- Paddle wheel
- Runs day and night-Energy intensive
- Radiates heat to the night sky
- Not Productive in cold weather
- Not hydrodynamic design
- Algae settles to the bottom
- Accumulates bacteria, invaders and grazers
- High OPEX
- High CAPEX

Arid Reactor System

- Solar pumping system –
 payback period 2 years
- Efficient harvesting

Less predators

Harvesting

- Current bottlenecks to cost effective production of biofuels from algae traditional is centrifuge
- Need to concentrate from 1 g/L to 40 or 100 g/L prior to extraction

Electrocoagulation

Filtration

Acoustic Focusing

Cost Effective?

Conversion Lipid Extracts to Fuels

"Contaminants" for Conversion are "Nutrients" for Cultivation

Feeding Results

Type of Animal Tested	Performance	Digestibility	Value
Ruminants Lambs, Cattle* *Biomass provided by DARPA (GA)	Palatable Growth, histology and blood metabolites similar to soybean -lambs	Supplementation of LEA does not impair fiber digestion Similar to cottonseed and soybean meal	Value of LEA in relation to soybean meal is ~ \$160 US
Nonruminants Pigs	Reduction in growth Blood not affected		
Aquaculture Red drum, Shrimp	LEA is a suitable replacement for traditional protein feeds for fish and shrimp production		Excellent but minerals of concern

Feed Value

Value of LEA and Whole Algae for Aquaculture Feed Relative to Soybean Meal, 2005-2012.

Cost Effective?

NAABB Improved Case

Combined HTL & CHG Conversion of Whole Algae

HTL Effluent Water

CHG Effluent Water

Chemical/Physical Characterization of Jet Fuel from HTL Conversion

				Jet Fuel From HTL Algal	Jet Fuel From HTL Algal
Paramete	er	Jet A	Jet A1	Bio-Oil #1	Bio-Oil #2
Density (g/L)		775 - 840	775 - 840	786.3	780.2
Freeze point (s	°C)	-40	-47	-45.8	-57
Flash Point (°C min	C)	38	38	61.2	59.6
Distillation					
10% Recovere Temp (T10) °C		205	205	167.8	167
50% Recovere Temp (T50) °C		Report	Report	207.4	203.6
90% Recovere Temp (T90) °C		Report	Report	244.6	242.2
Final Boiling P (°C) max	Point	300	300	273.2	272

AISIM = NAABB Algal Integrated Simulation Modeling

Statistical Data Analysis of Field Data

Applied Production Analysis (APA)

Graphic Information Systems Based Resource Assessment Model

Biomass Assessment Tool (BAT)

Scaling and Logistics of Algae Production Facilities

Algal Logistics Model (ALM)

Life Cycle Assessment

GREET and SimaPro

Techno-economic Analysis

Harmonized Techno-Economic Model and Energy Limited Model of Algal Biofuel Production

Financial Feasibility Analysis

Farm-level Algal Risk Simulation Model (FARM)

Measures of Sustainability Generated by AISIM

- •Risk Adjusted Profit
- Prob. of Success
- •CAPEX/OPEX
- •GHG Emissions
- Net Energy
- •Land Use
- •Marginal Cost
- •Water Use Needs

Fractional reductions in total costs for producing algae crude oil for the NAABB innovations

LCA Analysis

Feedstock	Greenhouse Gas Emissions (kg CO _{2eq} / kg feedstock)
Algae (this work)	0.1 - 4.4
Corn	0.3 - 0.4
Soybeans	0.4 - 0.5
Jatropha	0.3
Camelina [54]	0.1 - 0.3

- UOP Ecofining ™ Process to jet fuel or diesel
- Harvesting and Extraction (H&E) Unit Operations
- Land-Use Change in Large-Scale-Algae Cultivation

Contact: Kimberly Ogden

Department of Chemical and Environmental Engineering
University of Arizona
Tucson, Arizona USA
ogden@email.arizona.edu

Opportunities for Collaboration

- Production of algal biomass for a variety of applications
 - Fuel
 - Feed
 - High value Products
- Cultivation of genetically modified algae
- Design and implementation of integrated, controlled systems for cultivation, harvesting, and conversion.
- Optimization of algal productivity in impaired waters
- Culture diagnostics using molecular markers